REUSE OF KRYLOV SPACES IN NONLINEAR PROBLEMS 4673 Solution to a Succession of Linear

نویسندگان

  • Christian Rey
  • Magne S. Espedal
  • David E. Keyes
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear elasticity

1. Introduction. We consider the resolution of large-scale nonlinear problems arising from the finite-element discretization of geometrically non-linear structural analysis problems. We use a classical Newton Raphson algorithm to handle the non-linearity which leads to the resolution of a sequence of linear systems with non-invariant matrices and right hand sides. The linear systems are solved ...

متن کامل

Total and selective reuse of Krylov subspaces for the resolution of sequences of nonlinear structural problems

This paper deals with the definition and optimization of augmentation spaces for faster convergence of the conjugate gradient method in the resolution of sequences of linear systems. Using advanced convergence results from the literature, we present a procedure based on a selection of relevant approximations of the eigenspaces for extracting, selecting and reusing information from the Krylov su...

متن کامل

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

Jacobian-free Newton–Krylov methods: a survey of approaches and applications

Jacobian-free Newton–Krylov (JFNK) methods are synergistic combinations of Newton-type methods for superlinearly convergent solution of nonlinear equations and Krylov subspace methods for solving the Newton correction equations. The link between the two methods is the Jacobian-vector product, which may be probed approximately without forming and storing the elements of the true Jacobian, throug...

متن کامل

A General Algorithm for Reusing Krylov Subspace Information. I. Unsteady Navier-Stokes

A general algorithm is developed that reuses available information to accelerate the iterative convergence of linear systems with multiple right-hand sides A x = b i, which are commonly encountered in steady or unsteady simulations of nonlinear equations. The algorithm is based on the classical GMRES algorithm with eigenvector enrichment but also includes a Galerkin projection preprocessing ste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007